🎯 Introduction
The guide demonstrates how to use various tools to analyze API patterns and behaviors. By the end, you will understand how to examine API endpoints, analyze request/response patterns, and implement proper testing methodologies.
🛠️ Required Tools
🔍 Analysis Techniques
1. Basic Request Analysis 📡
Let's start by examining a simple API request:
import requests
# Basic request analyzer
def analyze_request(url):
print(f"Analyzing: {url}")
response = requests.get(url)
print(f"Status: {response.status_code}")
print(f"Headers: {dict(response.headers)}")
print(f"Content Type: {response.headers.get('content-type')}")
# Try with a public API
analyze_request("https://api.github.com/zen")
Video Tutorial: Using Postman
Video demonstration of basic API request analysis using Postman
2. Pattern Recognition 🎯
We'll create a simple pattern analyzer:
class PatternAnalyzer:
def __init__(self):
self.patterns = {}
def analyze_endpoint(self, url, method="GET"):
# Store endpoint patterns
key = f"{method} {url}"
self.patterns[key] = self.patterns.get(key, 0) + 1
def show_patterns(self):
for endpoint, count in self.patterns.items():
print(f"Endpoint: {endpoint}, Calls: {count}")
3. Response Analysis 📊
Examining API response patterns:
def analyze_response(response):
print("Status Code:", response.status_code)
if response.headers.get('x-ratelimit-limit'):
print("Rate Limit:", response.headers['x-ratelimit-limit'])
if 'json' in response.headers.get('content-type', ''):
data = response.json()
print("Response Structure:", list(data.keys()))
💡 Practical Examples
1. GitHub API Example
Let's analyze GitHub's API with our tools:
# Analyze GitHub API
def check_github_api():
# Basic user info request
url = "https://api.github.com/users/octocat"
# First, analyze the request
analyze_request(url)
# Then check response patterns
response = requests.get(url)
analyze_response(response)
print("
Trying another endpoint...")
# Try the repos endpoint
repos_url = "https://api.github.com/users/octocat/repos"
analyze_request(repos_url)
check_github_api()
🎥 Watch it in Action
Demo: Running the GitHub API analysis script and examining the results
2. Weather API Example
Analyzing weather data patterns:
# Weather API analysis
def check_weather_api():
base_url = "https://api.openweathermap.org/data/2.5/weather"
# Check weather for different cities
cities = ["London", "Tokyo", "New York", "Vienna"]
for city in cities:
print(f"Checking weather in {city}...")
url = f"{base_url}?q={city}&appid=your_api_key"
# Analyze the request
analyze_request(url)
# Check the response
response = requests.get(url)
analyze_response(response)
check_weather_api()
📚 Best Practices
API Analysis Guidelines
- • Always check API documentation first
- • Respect rate limits and terms of service
- • Use appropriate authentication methods
- • Document your findings systematically
- • Test in a controlled environment
🎯 Next Steps
After mastering these basics, you can:
- •Build more sophisticated analysis tools
- •Contribute to API security research
- •Develop automated testing frameworks